100 research outputs found

    Human physiology in extreme environments

    Get PDF
    Prikaz knjigeBook revie

    Physiological Changes, Activity, and Stress During a 100-km–24-h Walking-March

    Get PDF
    Background: Long-endurance exercises like ultramarathons are known to elicit various metabolic and physiological changes in the human body. However, little is known about very long-duration exercise at low intensities regarding healthy human subjects. Aim: The purpose of this study was to evaluate changes in body composition and metabolism in long-endurance but low-intensity events. Methods: Twenty-five male and 18 female healthy recreational athletes (age 34.6 ± 8.8 years; BMI: 22.4 ± 2.0 kg/m2) of the "100 km Mammutmarsch" were recruited for participation during the events in 2014-2016. Other than classical ultramarathons, the "Mammutmarsch" is a hiking event, in which participants were required to walk but not run or jog. It was expected to complete the 100-km distance within 24 h, resulting in a calculated mean speed of 4.17 km/h, which fits to the mean speed observed (4.12 ± 0.76 km/h). As not all participants reached the finish line, comparison of finishers (FIN, n = 11) and non-finishers (NON, n = 21) allowed differential assessment of performance. Body composition measured through bioelectrical impedance analysis (BIA) was determined pre- and post-event, and serum samples were taken pre-event, at 30, 70, and 100 km to determine NT-pro-BNP, troponin T, C-reactive protein (CRP), cortisol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, total cholesterol, total creatine kinase (CK), CK-MB, aminotransferase (AST), ALT, and sodium levels. Nineteen participants wore actimeter armbands (SenseWear®) to gain information about body activity and exercise intensity [metabolic equivalent of task (MET)]. Sixteen participants wore mobile heart rate monitors to assess mean heart rate during the race. Serum parameter alterations over the course of the race were analyzed with mixed-effects ANOVA and additional t-tests. All serum parameters were analyzed for correlation concerning different MET levels, speed, age, BMI, baseline NT-pro-BNP, mean heart rate during the race, and sex with linear regression analysis. Results: We found significant elevations for muscle and cardiac stress markers (CRP, CK, CK-MB, AST, ALT, cortisol, and NT-pro-BNP) as well as decreasing markers of lipid metabolism (cholesterol, triglycerides, LDL). Although the intensity level demanded from our participants was low compared with other studies on (ultra-) marathons, the alteration of tested parameters was similar to those of high-intensity exercise, e.g., NT-pro-BNP showed a fourfold increase (p < 0.01) and LDL decreased by 20% (p = 0.05). Besides the duration of exercise, age, BMI, training status, and sex are relevant parameters that influence the elevation of stress factors. Notably, our data indicate that NT-pro-BNP might be a marker for cardiovascular fitness also in healthy adults. Conclusion: This low-intensity long-endurance walk evoked a strong systemic reaction and large cell stress and shifted to a favorable lipid profile, comparable to higher intensity events. Despite increasing cardiac stress parameters, there were no indications of cardiac cell damage. Remarkably, the duration seems to have a greater influence on stress markers and metabolism than intensity

    The Human Dive Reflex During Consecutive Apnoeas in Dry and Immersive Environments: Magnitude and Synchronicity

    Get PDF
    Introduction: The human dive reflex (HDR), an O2 conserving reflex, is characterised by an interplay of central parasympathetic and peripheral sympathetic reactions, which are presumed to operate independently of each other. The HDR is fully activated during apnoea with facial immersion in water and complete immersion in water is thought to increase the magnitude of HDR during consecutive apnoeas. A comparison of HDR activity between consecutive apnoeas in full-body immersion with consecutive apnoeas in dry conditions has not been fully explored. Also, the interplay between parasympathetic and sympathetic reactions involved in the HDR has not been thoroughly analysed. Methods: 11 human volunteers performed 3 consecutive 60 s apnoeas with facial immersion in dry conditions (FIDC) and 3 consecutive apnoeas with facial immersion in full immersion (FIFI). Heart rate (HR), R-R interval (RRI), finger pulse amplitude (FPA), splenic width (SW) and SpO2 were all measured before, during and after apnoeas. A one-way ANOVA using Dunn’s post hoc test was performed to assess HDR activity, and a Pearson’s correlation test was performed to assess HDR synchronisation between physiological parameters during both conditions. Results: Although HDR activity was not significantly different between both conditions, HR and RRI showed progressively greater changes during FIFI compared with FIDC, while SW and FPA changes were relatively equivalent. During FIDC, significant correlations were found between SW & SpO2 and FPA & SpO2. During FIFI, significant correlations were found between RRI & FPA, SW & FPA, HR & SpO2 and FPA & SpO2. Discussion: While there was no significant difference found between HDR activity during FIDC and FIFI, consecutive apnoeas during FIFI triggered a greater magnitude of cardiac activity. Furthermore, significant correlations between RRI and SW with FPA indicate a crosstalk between parasympathetic tone with splenic contraction and increased peripheral sympathetic outflow during FIFI compared to FIDC. In conclusion, HDR activity during consecutive apnoeas does not differ between FIDC and FIFI. There appears to be however a greater level of synchronicity during apnoeas in FIFI compared to FIDC and that this is most likely due to the physiological effects of immersion, which could induce neural recruitment and increased cross talk of HDR pathways

    Head-Down Tilt Position, but Not the Duration of Bed Rest Affects Resting State Electrocortical Activity

    Get PDF
    Adverse cognitive and behavioral conditions and psychiatric disorders are considered a critical and unmitigated risk during future long-duration space missions (LDSM). Monitoring and mitigating crew health and performance risks during these missions will require tools and technologies that allow to reliably assess cognitive performance and mental well-being. Electroencephalography (EEG) has the potential to meet the technical requirements for the non-invasive and objective monitoring of neurobehavioral conditions during LDSM. Weightlessness is associated with fluid and brain shifts, and these effects could potentially challenge the interpretation of resting state EEG recordings. Head-down tilt bed rest (HDBR) provides a unique spaceflight analog to study these effects on Earth. Here, we present data from two long-duration HDBR experiments, which were used to systematically investigate the time course of resting state electrocortical activity during prolonged HDBR. EEG spectral power significantly reduced within the delta, theta, alpha, and beta frequency bands. Likewise, EEG source localization revealed significantly lower activity in a broad range of centroparietal and occipital areas within the alpha and beta frequency domains. These changes were observed shortly after the onset of HDBR, did not change throughout HDBR, and returned to baseline after the cessation of bed rest. EEG resting state functional connectivity was not affected by HDBR. The results provide evidence for a postural effect on resting state brain activity that persists throughout long-duration HDBR, indicating that immobilization and inactivity per se do not affect resting state electrocortical activity during HDBR. Our findings raise an important issue on the validity of EEG to identify the time course of changes in brain function during prolonged HBDR, and highlight the importance to maintain a consistent body posture during all testing sessions, including data collections at baseline and recovery

    Gene expression profiling in slow-Type calf soleus muscle of 30 days space-flown mice

    Get PDF
    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight

    Electrocortical Evidence for Impaired Affective Picture Processing after Long-Term Immobilization

    Get PDF
    The neurobehavioral risks associated with spaceflight are not well understood. In particular, little attention has been paid on the role of resilience, social processes and emotion regulation during long-duration spaceflight. Bed rest is a well-established spaceflight analogue that combines the adaptations associated with physical inactivity and semi-isolation and confinement. We here investigated the effects of 30 days of 6 degrees head-down tilt bed rest on affective picture processing using event-related potentials (ERP) in healthy men. Compared to a control group, bed rest participants showed significantly decreased P300 and LPP amplitudes to pleasant and unpleasant stimuli, especially in centroparietal regions, after 30 days of bed rest. Source localization revealed a bilateral lower activity in the posterior cingulate gyrus, insula and precuneus in the bed rest group in both ERP time frames for emotional, but not neutral stimuli

    Bed rest and cognition: effects on executive functioning and reaction time

    Full text link
    INTRODUCTION: Executive functions are high-order aspects of cognition heavily dependent upon the prefrontal cortex. Both prefrontal cortex activity and executive function task performance are enhanced by participation in aerobic physical activity, suggesting that a lack of such activity during the bed rest model of prolonged weightlessness might induce executive function deficits. METHODS: Twenty-four healthy males (ages 21-45 yr) undertook 60 d of head-down bed rest (-6 degrees) for the 2nd Berlin Bed Rest Study (BBR2-2). Three executive function tasks (Iowa Gambling Task, working memory, and flanker) and a reaction time task were administered before, during, and after bed rest. RESULTS: Iowa Gambling Task scores were significantly worse during bed rest (1.7 +/- 6.9) than in other sessions (24.3 +/- 7.8). Effects on working memory and flanker task performance were less obvious, requiring practice effects to be considered. Reaction time was significantly slower after bed rest (569 +/- 42 ms) than in earlier tests (529 +/- 45 ms). There was also significantly less intrasubject variability in reaction time after bed rest, consistent with more efficient executive functioning at this stage. DISCUSSION: Our results provide some evidence for a detrimental effect of bed rest on executive functioning. Whether this stems from a lack of aerobic physical activity and/or changes in the prefrontal cortex remains to be determined. Cognitive effects of bed rest could have implications for the planned human exploration of Mars, and for medical and lifestyle conditions with inadequate levels of aerobic physical activity

    The Gender Factor

    Get PDF
    Purpose Antarctic residence holds many challenges to human physiology, like increased psycho-social tension and altered circadian rhythm, known to influence sleep. We assessed changes in sleep patterns during 13 months of overwintering at the German Stations Neumayer II and III from 2008 to 2014, with focus on gender, as many previous investigations were inconclusive regarding gender-based differences or had only included men. Materials & Methods Time in bed, sleep time, sleep efficiency, number of arousals, sleep latency, sleep onset, sleep offset, and physical activity level were determined twice per month during seven overwintering campaigns of n = 54 participants (37 male, 17 female) using actimetry. Data were analyzed using polynomial regression and analysis of covariance for change over time with the covariates gender, inhabited station, overwintering season and influence of physical activity and local sunshine radiation. Results We found overall longer times in bed (p = 0.004) and sleep time (p = 0.014) for women. The covariate gender had a significant influence on time in bed (p<0.001), sleep time (p<0.001), number of arousals (p = 0.04), sleep latency (p = 0.04), and sleep onset (p<0.001). Women separately (p = 0.02), but not men (p = 0.165), showed a linear increase in number of arousals. Physical activity decreased over overwintering time for men (p = 0.003), but not for women (p = 0.174). The decline in local sunshine radiation led to a 48 minutes longer time in bed (p<0.001), 3.8% lower sleep efficiency (p<0.001), a delay of 32 minutes in sleep onset (p<0.001), a delay of 54 minutes in sleep offset (p<0.001), and 11% less daily energy expenditure (p<0.001), for all participants in reaction to the Antarctic winter’s darkness-phase. Conclusions Overwinterings at the Stations Neumayer II and III are associated with significant changes in sleep patterns, with dependences from overwintering time and local sunshine radiation. Gender appears to be an influence, as women showed a declining sleep quality, despite that their physical activity remained unchanged, suggesting other causes such as a higher susceptibility to psycho-social stress and changes in environmental circadian rhythm during long-term isolation in Antarctica
    • …
    corecore